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Abstract

In this study, the nonlinear vibrations are investigated of circular cylindrical shells, empty or fluid-filled, clamped at

both ends and subjected to a radial harmonic force excitation. Two different theoretical models are developed. In the

first model, the standard form of the Donnell’s nonlinear shallow-shell equations is used; in the second, the equations of

motion are derived by a variational approach which permits the inclusion of constraining springs at the shell extremities

and taking in-plane inertial terms into account. In both cases, the solution includes both driven and companion modes,

thus allowing for a travelling wave in the circumferential direction; they also include axisymmetric modes to capture the

nonlinear inward shell contraction and the correct type (softening) nonlinear behaviour observed in experiments. In the

first model, the clamped beam eigenfunctions are used to describe the axial variations of the shell deformation,

automatically satisfying the boundary conditions, leading to a 7 degree-of-freedom (dof) expansion for the solution. In

the second model, rotational springs are used at the ends of the shell, which when large enough reproduce a clamped

end; the solution involves a sine series for axial variations of the shell deformation, leading to a 54 dof expansion for the

solution. In both cases the modal expansions satisfy the boundary conditions and the circumferential continuity

condition exactly. The Galerkin method is used to discretize the equations of motion, and AUTO to integrate the

discretized equations numerically. When the shells are fluid-filled, the fluid is assumed to be incompressible and inviscid,

and the fluid–structure interaction is described by linear potential flow theory. The results from the two theoretical

models are compared with existing experimental data, and in all cases good qualitative and quantitative agreement is

observed.
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1. Introduction

An extensive review on geometrically nonlinear (large-amplitude) shell vibrations has recently been provided by

Amabili and Paı̈doussis (2003); see also Paı̈doussis (2003). From this review emerges the fact that most of the literature

deals with simply supported shells. Not many studies on shells with other boundary conditions are available; some of

the most important ones will be discussed in the following.
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Nomenclature

E Young’s modulus
~f ; f̄ force excitation

h shell thickness

k stiffness of the rotational distributed springs

at the ends of the shell

kx; ky; kxy changes in curvature and torsion

L shell length

m number of axial half-waves

n number of circumferential waves

Nx;Ny;Nxy stress resultants per unit length

R shell radius

t time

uðx; y; tÞ axial shell displacement

um;n;cðtÞ; um;n;sðtÞ modal coordinates of axial displace-

ment (time dependent)

vðx; y; tÞ circumferential shell displacement

vm;n;cðtÞ; vm;n;sðtÞ modal coordinates of circumferen-

tial displacement (time dependent)

wðx; y; tÞ radial shell displacement

wm;n;cðtÞ; wm;n;sðtÞ modal coordinates of radial displa-

cement (time dependent)

x; y; z longitudinal, circumferential, radial coordi-

nates

ex, ey, gxy shell strains

ex;0, ey;0, gxy;0 middle surface strains

z1;n modal damping coefficient of mode (1,n)

y angular coordinate

lm dimensionless mth mode eigenvalue of a

clamped–clamped beam (Model 1)

lm mp/L in Model 2

rS mass density of the shell

jm dimensionless beam eigenfunction asso-

ciated with eigenvalue lm

F velocity potential of the fluid

o force excitation frequency

o1;n fundamental frequency of first longitudinal

and nth circumferential mode
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Matsuzaki and Kobayashi (1969) studied theoretically and experimentally large-amplitude vibrations of clamped

circular cylindrical shells. They based their analysis on Donnell’s nonlinear shallow-shell theory and used a simple mode

expansion with 2 degrees of freedom (dof). The analysis predicted a softening type nonlinearity for clamped shells, in

agreement with their own experimental results. They also found amplitude-modulated response close to resonance and

identified it as a beating phenomenon due to frequencies very close to the excitation frequency.

Chia (1987a, b) studied nonlinear free vibrations and postbuckling of symmetrically and asymmetrically laminated

circular cylindrical panels with imperfections and different boundary conditions. Donnell’s nonlinear shallow-shell

theory was used. A single-mode analysis was carried out, and the results showed a hardening nonlinearity. Iu and Chia

(1988) used Donnell’s nonlinear shallow-shell theory to study free vibrations and post-buckling of clamped and simply

supported, asymmetrically laminated cross-ply circular cylindrical shells. A multi-mode expansion was used without

considering the companion mode. Radial geometric imperfections were taken into account. The homogeneous solution

of the stress function was retained, but the dependence on the axial coordinate was neglected. The discretized equations

of motion were obtained by using the Galerkin method and were studied by harmonic balance. Three asymmetric and

three axisymmetric modes were used in the numerical calculations. In a later paper, Fu and Chia (1993) included in their

model nonuniform boundary conditions around the edges. Softening or hardening type nonlinearity was found,

depending on the radius-to-thickness ratio. Only undamped free vibrations and buckling were investigated in all this

series of studies.

Large-amplitude vibrations of two vertical clamped circular cylindrical shells, partially filled with water to different

levels were studied experimentally by Chiba (1993). In this case, the responses displayed a general softening

nonlinearity. The shells tested showed a larger nonlinearity when partially filled, as compared to the empty and

completely filled cases. The softening type of nonlinearity was also observed in the large-amplitude vibrations of four

axially loaded, clamped circular cylindrical shells made of aluminum, studied experimentally by Gunawan (1998).

Amabili (2003a) investigated large-amplitude vibrations of circular cylindrical shells with different boundary

conditions and subjected to radial harmonic excitation in the spectral neighbourhood of the lowest resonances. In

particular, simply supported shells with either allowed or constrained axial displacements at the edges were studied; in

both cases the radial and circumferential displacements at the shell edges were constrained. Elastic rotational

constraints were assumed; they allow simulating any condition from simply supported to perfectly clamped, by varying

the stiffness of this elastic constraint. Two different nonlinear, thin shell theories, namely Donnell’s and Novozhilov’s,

were used to calculate the elastic strain energy. Geometric imperfections were taken into account.

In contrast, the literature on large-amplitude vibrations of simply supported shells with and without fluid–structure

interaction is much richer; e.g., see Dowell and Ventres (1968), Gonc-alves and Batista (1988), Kobayashi and Leissa

(1995), Amabili et al. (1999, 2000, 2003b,c), and the references cited therein.
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In this paper, two theoretical models are formulated for the nonlinear dynamics of thin cylindrical shells with

clamped ends, either empty or filled with dense fluid.

Model 1 utilizes the classical form of the Donnell’s nonlinear shallow-shell equations, involving two coupled

nonlinear equations in the radial displacement and an Airy stress function. These equations, being available, for

instance in Donnell (1976) and Yamaki (1984), are not derived here ab initio. In this case the formulation applies

exclusively to shells with clamped ends, and the clamped-beam eigenfunctions are used to describe the axial variation of

the radial deformation. The discretized equations are obtained by means of the Galerkin method, yielding a 7 dof

model.

Model 2, which is the more sophisticated model, uses the Hamiltonian (variational) framework, leading to a

Lagrangian derivation of the discretized equations of motion (after appropriate modal expansions are used to

accomplish this discretization). It is based on the full form of the Donnell’s nonlinear shell theory, and thus involves

three equations, and all three of the longitudinal (u), circumferential (v) and radial (w) displacements of the middle

surface of the shell. The formulation is sufficiently general to be used for shells with supports ranging from simple

supports to clamped ones. Thus, so far as the axial component of the shell deformation is concerned, a Fourier sine

series is employed. The final discretized model is one of 54 dof.

In both cases, fundamentally the same linear fluid–structure interaction model is used—linear because nonlinearities

associated with shell movements of the order of the shell thickness are negligible for the fluid, even though they are not

for the shell itself.
2. Theoretical considerations

Two different models have been used in the present analysis. Model 1 has been specifically developed in the present

study to deal with shells with clamped extremities. It involves a reduced number of dof. Model 2 has been developed by

Amabili (2003a) and has been used here as a reference. It is very flexible as far as boundary conditions are concerned

but involves a significant number of dof. The derivation of the equation of motion for each model is given in some detail

in the following paragraphs.

Fig. 1 shows the system under consideration. It consists of a thin circular cylindrical shell of length L, mean radius R,

and thickness h, such that h=R51. The shell ends are assumed to be clamped. The origin of the cylindrical coordinate

system, ðO; x; y; zÞ, is positioned at the centre of one end of the shell. The shell is assumed to be of homogeneous,

isotropic elastic material of Young’s modulus E and Poisson’s ratio n.
2.1. Formulation of Model 1

Model 1 is based on Donnell’s nonlinear shallow-shell theory, which has the following limitations: (a) it is accurate

for higher circumferential wavenumbers n (1=n251, i.e., the minimum number of nodal diameters should be n ¼ 4 or 5);

(b) the in-plane inertia, transverse shear deformation and rotary inertia are neglected, making the theory valid for very

thin shells, i.e., h5R, to capture moderate radial amplitudes of the order of the shell thickness (assuming that

juj; jvj5h); (c) secondary nonlinear effects such as the nonlinearities in curvature strains are neglected.

Assuming a positive radial deformation w inwards, as in Fig. 1(a), the simplified version of Donnell’s nonlinear

shallow-shell equation is given by

Dr4wþ ch _wþ rSh €w ¼ f � pþ
1

R

q2F

qx2
þ

q2F

qy2

q2w

qx2
� 2

q2F

qxqy

q2w

qxqy
þ
q2F

qx2

q2w

qy2

� �
, (1)

where F is the in-plane Airy stress function which satisfies the following compatibility equation:

1

Eh
r4F ¼ �

1

R

q2w

qx2
�
q2w

qx2

q2w

qy2
þ

q2w

qxqy

� �2

, (2)

where D ¼ Eh3=½12ð1� n2Þ� is the flexural stiffness of the shell, c the structural damping coefficient, f represents the

summation of all the external forces acting on the surface per unit area of the shell in the radial direction, and p the

transmural pressure acting on the surface of the shell. The biharmonic operator is defined as r4 ¼ ½q2ð Þ=qx2þ

q2ð Þ=qy2�2, and the overdot denotes a time derivative.
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Fig. 1. Shell geometry and origin of coordinate system: (a) for Model 1; (b) for Model 2.

K.N. Karagiozis et al. / Journal of Fluids and Structures 21 (2005) 579–595582
The expressions for the stress resultants per unit length in the axial and circumferential directions along with the

shear stress resultant are given by

Nx ¼
q2F

qy2
; Ny ¼

q2F

qy2
; Nxy ¼ �

q2F

qxqy
. (3)

The strain–displacement relations are given by

ð1� n2Þ
Nx

Eh
¼ �

nw
R
þ

1

2

qw

qx

� �2

þ
n
2

qw

qy

� �2

þ
qu

qx
þ n

qv

qy
,

ð1� n2Þ
Ny

Eh
¼ �

w

R
þ

n
2

qw

qx

� �2

þ
1

2

qw

qy

� �2

þ n
qu

qx
þ

qv

qy
,

ð1� n2Þ
Nxy

Eh
¼ 2ð1� nÞ

qw

qx

qw

qy
þ

qu

qy
þ

qv

qx

� �
. ð4Þ
2.2. Formulation of Model 2

In contrast to Model 1, the fuller form of Donnell’s shallow-shell theory is used here, involving three equations of

motion. Moreover, a variational approach derivation allows the easy inclusion of constraining springs at the shell

extremities. Along the middle surface of the shell the displacement components are denoted by u, v, and w, in the axial,

circumferential and radial direction, respectively. Fig. 1(b) shows the same system considered in Section 2.1, but with a

different convention for the axes and the shell displacements; notably, w in this case is positive outwards.

The strain components ex, ey and gxy at an arbitrary point of the shell are related to the middle surface strains ex;0, ey;0
and gxy;0 and to the changes in the curvature and torsion of the middle surface kx, ky and kxy by the following
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relationships (Leissa, 1973; Yamaki, 1984):

ex ¼ ex;0 þ zkx; ey ¼ ey;0 þ zky; gxy ¼ gxy;0 þ zkxy, (5)

where z is the distance of the arbitrary point of the shell from the middle surface.

According to Donnell’s nonlinear shell theory, the middle surface strain–displacement relationships and changes in

the curvature and torsion for a circular cylindrical shell (Yamaki, 1984) are given by

ex;0 ¼
qu

qx
þ
1

2

qw

qx

� �2

, (6a)

ey;0 ¼
1

R

qv

qy
þ

w

R
þ

1

2R2

qw

qy

� �2

, (6b)

gxy;0 ¼
1

R

qu

qy
þ

qv

qx
þ

1

R

qw

qy
qw

qx
, (6c)

kx ¼ �
q2w

qx2
, (6d)

ky ¼ �
1

R2

q2w

qy2
, (6e)

kxy ¼ �
2

R

q2w

qxqy
. (6f)

The elastic strain energy US of a circular cylindrical shell, neglecting stress sz according to Love’s first approximation

assumptions, is given (Leissa, 1973) by

US ¼
1

2

Z 2p

0

Z L

0

Z h=2

�h=2
ðsxex þ syey þ txygxyÞdxRð1þ z=RÞdydz; (7)

the stresses sx, sy and txy are related to the strain for homogeneous and isotropic materials, with sz ¼ 0 in the case of

plane stress (Leissa, 1973) by

sx ¼
E

1� n2
ðex þ neyÞ; sy ¼

E

1� n2
ðey þ nexÞ; txy ¼

E

2ð1þ nÞ
gxy. (8)

By using Eqs. (5), (7) and (8), the following expression is obtained:

US ¼
1

2

Eh

1� n2

Z 2p

0

Z L

0

e2x;0 þ e2y;0 þ 2nex;0ey;0
�

þ
1� n
2

g2xy;0

�
dx Rdy

þ
1

2

Eh3

12ð1� n2Þ

Z 2p

0

Z L

0

k2
x þ k2

y þ 2nkxky þ
1� n
2

k2
xy

� �
dx Rdy. ð9Þ

The first term in Eq. (9) is the membrane (also referred to as stretching) energy, and the second one is the bending

energy.

Neglecting rotary inertia, the kinetic energy TS of a circular cylindrical shell is given by

TS ¼
1

2
rSh

Z 2p

0

Z L

0

ð _u2 þ _v2 þ _w2ÞdxRdy, (10)

where r
S
is the mass density of the shell; the overdot denotes a time derivative.

The final equations of motion are derived from the expressions of US and TS by means of variational techniques.

2.3. Boundary conditions

The boundary conditions for Model 1 are

u ¼ v ¼ w ¼ 0 and qw=qx ¼ 0 at x ¼ 0 and x ¼ L. (11)
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Since the clamped–clamped beam eigenfunctions are used to describe the axial variations in wðx; y; tÞ, all these boundary
conditions are automatically satisfied.

The boundary conditions for Model 2 are given by

u ¼ v ¼ w ¼ 0; at x ¼ 0;L, (12a2c)

Mx ¼ �kðqw=qxÞ; at x ¼ 0;L, (12d)

where Mx is the bending moment per unit length and k the stiffness per unit length of the elastic, distributed rotational

springs placed at x ¼ 0, L. The boundary conditions (12a)–(12c) restrain all the shell displacements at both edges.

Eq. (12d) represents the case of an elastic rotational constraint at the shell edges. For a simple support, k! 0 (Mx ¼ 0,

unconstrained rotation), while a clamped end can be achieved by taking k!1 (zero rotation, qw=qx ¼ 0); this

approach is usually referred to as the artificial spring method (Yuan and Dickinson, 1992), which can be regarded as a

variant of the classical penalty method. The values of the spring stiffness simulating a clamped shell can be obtained by

trial and error or by evaluating the edge stiffness of the shell. In fact, it was found (Amabili and Garziera, 2000) that the

natural frequencies of the system converge asymptotically to those of a clamped shell when k becomes very large.

In addition to the essential boundary conditions, both models must satisfy the condition of the circumferential

continuity of the shell and be continuous in u and w.

2.4. Modal expansion

In order to reduce the continuous system to one of finite dimension, i.e., to discretize the system, the middle surface

displacements u, v and w (only w in Model 1), are expanded by using approximation functions, i.e., using an appropriate

set of basis functions. It is necessary to consider, in addition to the asymmetric mode directly driven into vibration by

the excitation (driven mode), (i) the orthogonal mode having the same shape and natural frequency but rotated by

p=ð2nÞ (companion mode), (ii) additional asymmetric (both driven and companion) modes, and (iii) axisymmetric

modes. It has firmly been established that, for large-amplitude shell vibrations, the deformation of the shell involves

significant axisymmetric oscillations inwards.

2.4.1. Modal expansion for Model 1

The modal expansion for w in Model 1 is taken as

w ¼
XM
m¼1

XN

n¼1

ðAm;nðtÞ cosðny=RÞ þ Bm;nðtÞ sinðny=RÞÞjm þ
XM
m¼1

A2m�1;0ðtÞj2m�1, (13)

where jm are the dimensionless eigenfunctions for a clamped–clamped beam defined by

jm ¼ coshðlmx=LÞ � cosðlmx=LÞ �
coshðlmÞ � cosðlmÞ

sinhðlmÞ � sinðlmÞ
ðsinhðlmx=LÞ � sinðlmx=LÞÞ, (14)

lm being the corresponding dimensionless eigenvalues; m the axial wavenumber (equal to the number of half-waves

along the shell), and n the circumferential wavenumber. The amplitude functions, Am;nðtÞ, Bm;nðtÞ and A2m�1;0ðtÞ, are the

unknown generalized time functions of the vibration.

The first term of the expansion in Eq. (13), i.e., the double summation, involves the interaction between the linear

asymmetric circumferential modes of nodal diameter n40, and all of the corresponding linear axisymmetric-

longitudinal modes of m half-waves; this term consists of the driven mode along with its companion mode. The second

term of the expansion involves all the axisymmetric-longitudinal modes, with n ¼ 0. This second term has been shown

to be very important in the stability analysis of the shell (Amabili et al., 1999) for simply supported shells. In the second

term of the expansion, even axisymmetric modes are neglected, because these modes do not contribute to the shell

contraction (the even m contractions along the length of the shell cancel out, having a zero average radial deformation).

The modal expansion given in Eq. (13) satisfies exactly the boundary conditions given in Eq. (11). The solution also

satisfies exactly both the circumferential continuity and axial displacement conditions below:Z 2pR

0

qv

qy
dy ¼ 0; (15)

Z 2pR

0

Z L

0

qu

qx
dxdy ¼ 0. (16)
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An important advantage of the expansion in Eq. (13) is the orthogonality property of the eigenfunctions involved in

the summation, which simplifies the derivation of the equations of motion for the shell system.

In the present analysis the modal solution, w, given in Eq. (13), is expanded into a 7 dof model, as shown below:

wðx; y; tÞ ¼ A1;nðtÞ cos
ny

R

h i
þ B1;nðtÞ sin

ny

R

h i� �
j1ðxÞ þ A2;nðtÞ cos

ny

R

h i
þ B2;nðtÞ sin

ny

R

h i� �
j2ðxÞ

þ A1;0ðtÞj1ðxÞ þ A3;0ðtÞj3ðxÞ þ A5;0ðtÞj5ðxÞ. ð17Þ

The convergence of Model 1 with 7 dof will be tested by comparison to the results of Model 2, those of a finite

element code, and to experimental data available in the literature.
2.4.2. Modal expansion for Model 2

In Model 2, the displacements u, v and w can be expanded by using the following expressions, which satisfy identically

boundary conditions (12a–c):

uðx; y; tÞ ¼
XM1

m¼1

XN

j¼1

um;j;cðtÞ cosðjyÞ
�

þum;j;sðtÞ sinðjyÞ
�
sinðlmxÞ

þ
XM2

m¼1

um;0ðtÞ sinðlmxÞ, ð18aÞ

vðx; y; tÞ ¼
XM1

m¼1

XN

j¼1

vm;j;cðtÞ sinðjyÞ
�

þvm;j;sðtÞ cosðjyÞ
�
sinðlmxÞ

þ
XM2

m¼1

vm;0ðtÞ sinðlmxÞ, ð18bÞ

wðx; y; tÞ ¼
XM1

m¼1

XN

j¼1

wm;j;cðtÞ cosðjyÞ
�

þwm;j;sðtÞ sinðjyÞ
�
sinðlmxÞ

þ
XM2

m¼1

wm;0ðtÞ sinðlmxÞ, ð18cÞ

where j is the number of circumferential waves, m the number of longitudinal half-waves, lm ¼ mp=L, and t the time;

um;jðtÞ, vm;jðtÞ and wm;jðtÞ are the generalized coordinates that are unknown functions of t; the additional subscript c or s

indicates if the generalized coordinate is associated to a cosine or sine function in y, except for v, for which the notation

is reversed (no additional subscript is used for the axisymmetric terms). The integers N, M1 and M2 must be selected

with care in order to obtain the required accuracy and acceptable dimension of the nonlinear problem.

Excitation in the neighbourhood of resonance of a mode with one longitudinal half-wave (m ¼ 1) and n

circumferential waves, denoted as mode (1, n), is considered. In particular, only modes with an odd m value of

longitudinal half-waves can be considered for symmetry reasons in the expansions of v and w (if geometric

imperfections with an even m value are not introduced); only even terms are necessary for u. Asymmetric modes having

up to 12 longitudinal half-waves (M1 ¼M2 ¼ 12) have been considered in the numerical calculations to achieve good

accuracy. In fact, linear and nonlinear interaction among terms with different numbers of axial half-waves exists; these

terms are not the linear modes of the shell with boundary conditions given by Eqs. (12). More terms are necessary for

in-plane than for radial displacements.

The expansion used in the numerical calculation for excitation in the neighbourhood of resonance of mode (1, n) is

uðx; y; tÞ ¼
X6
m¼1

½u2m;n;cðtÞ cosðnyÞ þ u2m;n;sðtÞ sinðnyÞ� cosðl2mxÞ

þ
X6
m¼1

u2m;0ðtÞ cosðl2mxÞ

þ ½u2;2n;cðtÞ cosð2nyÞ þ u2;2n;sðtÞ sinð2nyÞ� cosðl2xÞ, ð19aÞ
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vðx; y; tÞ ¼
X6
m¼1

½v2m�1;n;cðtÞ sinðnyÞ þ v2m�1;n;sðtÞ cosðnyÞ� sinðl2m�1xÞ

þ ½v1;2n;cðtÞ sinð2nyÞ þ v1;2n;sðtÞ cosð2nyÞ� sinðl1xÞ

þ ½v3;2n;cðtÞ sinð2nyÞ þ v3;2n;sðtÞ cosð2nyÞ� sinðl3xÞ, ð19bÞ

wðx; y; tÞ ¼
X6
m¼1

½w2m�1;n;cðtÞ cosðnyÞ þ w2m�1;n;sðtÞ sinðnyÞ� sinðl2m�1xÞ

þ
X6
m¼1

w2m�1;0ðtÞ sinðl2m�1xÞ. ð19cÞ

This expansion has 54 generalized coordinates (dof) and guarantees good accuracy for the calculation performed in the

present work, as numerically verified. The dimension of the nonlinear system is much smaller than 54 dof, but a

different basis must be used to condense the system. However, this basis is very intuitive and allows calculations without

losing the physical significance of each term. Torsional axisymmetric terms are not necessary.

Expansion (19) is an extension of the one developed for simply supported shells (Amabili, 2003c), for which

convergence has been deeply investigated. In particular, more terms are necessary with respect to those used in Amabili

(2003c) in order to have an accurate evaluation of the natural (linear) frequency, because the functions used are

different from the mode shapes of the shell with constrained axial displacement (u ¼ 0) at the shell ends. The inclusion

of some extra terms, such as u4;2n;cðtÞ and u4;2n;sðtÞ, has been checked numerically and does not give any significant

change in the shell response.

2.5. External loads

For Model 1, the external harmonic excitation at point ðx̄; ȳÞ is assumed to be in the form of

f ¼ f̄ dðy� ȳÞdðx� x̄Þ cosðotÞ, (20)

where f̄ is the amplitude of the force, and ȳ ¼ ȳ=R and x̄ are the angular and axial coordinates of the point of

application of the force. In this study, ȳ ¼ 0 and x̄ ¼ L=2.
For Model 2, the virtual work W done by the external forces is written as

W ¼

Z 2p

0

Z L

0

ðqxuþ qyvþ qrwÞdxRdy, (21)

where qx, qy and qr are the distributed forces per unit area acting in the axial, circumferential and radial directions,

respectively. Initially, only a single harmonic radial force is considered; therefore qx ¼ qy ¼ 0. The external radial

distributed load qr applied to the shell, due to the radial concentrated force ~f , is given by

qr ¼
~f dðRy� R~yÞdðx� ~xÞ cosðotÞ, (22)

where o is the excitation frequency, t the time, d the Dirac delta function, ~f gives the radial force amplitude positive in

the z direction, ~x and ~y give the axial and angular positions of the point of application of the force, respectively; in the

numerical calculations, the point excitation is located at ~x ¼ L=2, ~y ¼ 0. Eq. (21) can be rewritten in the following form:

W ¼ ~f cosðotÞðwÞx¼L=2;y¼0. (23)

The external force in Eqs. (20) and (23) can describe the excitation provided by an electrodynamical exciter (shaker),

for instance.

2.6. Fluid–structure interaction

Let us consider the case when there is fluid–structure interaction. The shell is assumed to be completely filled with

dense fluid. Furthermore, it is assumed, that the fluid is inviscid and isentropic. Nonlinearities in the dynamic pressure

and in the boundary conditions at the fluid–structure interface are neglected, because fluid movements of the order of

the shell thickness may be considered to be small; and hence a linear formulation is valid. Indeed, these nonlinear effects

have been found to be negligible by Gonc-alves and Batista (1988). In addition, pre-stress in the shell due to fluid weight

(hydrostatic effect) is neglected. With these assumptions, the fluid–structure interaction can be described by potential

flow theory.
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We define the velocity potential by F. Neglecting compressibility effects, F must satisfy

r2F ¼
q2F
qx2
þ

q2F
qr2
þ

1

r

qF
qr
þ

1

r2
q2F

qy2
, (24)

i.e., the Laplace equation in cylindrical coordinates. Using Bernoulli’s equation, the perturbation pressure p is easily

found to be given by

p ¼ rF

qF
qt

� �
. (25)

In both models, the fluid is assumed to effectively be a deformable cylinder of infinite length, which lies within a

periodically supported shell of infinite length. This assumption allows us to use the method of separation of variables in

the solution of the velocity potential. This is possible only if we assume that the shell deformation w, along with the flow

field, is defined for any x 2 ð�1;1Þ.
Specifically in Model 1, this requires that the modal expansion be equal to its antisymmetric expression between

x ¼ L and 2L, as follows:

w ¼ wðx; y; tÞ for 0pxpL;

w ¼ �wðx� L; y; tÞ for Lpxp2L . (26)

In essence, this periodicity of w allows us not to have to impose fluid boundary conditions at the ends of the finite

(0,L) domain of the shell. The periodicity for w, from 0 to 2L, is important for the axisymmetric modes (modes with

n ¼ 0), so that a zero mean flow volume be obtained from 0 to 2L.

The expression for w, in both models, satisfies the essential boundary conditions exactly for 0pxp2L. It must satisfy

the radial boundary conditions given by

at r ¼ 0 the flow is finite;

at r ¼ R)
qF
qr
¼

qw

qt

� �
; (27)

where the second is the impermeability condition, applied at r ¼ R. The expansion for w is substituted into the Laplace

equation (24) and the solution for F is obtained with the separation of variables method. The velocity potential can be

assumed to be of the form

Fðx; r; y; tÞ ¼ ZðrÞxðxÞgðyÞzðtÞ. (28)

Eq. (28) is substituted in Eq. (24), and the following three ordinary differential equations are obtained for x, r and y:

Z00ðrÞ þ
1

r
Z0ðrÞ �

n2

r2
� k2

m

� �
ZðrÞ ¼ 0,

x00ðxÞ þ k2
mxðxÞ ¼ 0,

g00ðyÞ þ n2gðyÞ ¼ 0, ð29Þ

where ð Þ0 denotes a derivative with respect to r, x or y, accordingly.
For Model 1, the solutions of Eqs. (29) are given by

ZðrÞ ¼ DmInðkmrÞ þ EmKnðkmrÞ, (30)

xðxÞ ¼ Am sinðkmxÞ þ Bm cosðkmxÞ, (31)

gðyÞ ¼ F cosðnyÞ, (32)

where Am, Bm, Dm, Em and F are constants. The solutions of the above equations are found by expanding the radial

displacement, w, as a Fourier series of an orthogonal set of functions, such as a sine series, thus transforming the beam

functions of Eq. (14) into a series of sine functions of the same wavelength

wm;n ¼
XMM

j¼1

bm;n;j sin
jpx

L

� �
cosðnyÞzðtÞ, (33)
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where MM is an integer and

bm;n;j ¼
2

L

Z L

0

jmðxÞ sin
jpx

L

� �
dx, (34)

where jmðxÞ are the beam functions given by Eq. (14).

Using the impermeability boundary condition, Eq. (27), the solution for the velocity potential is found to be

F ¼
X

m

X
n

ZmðrÞ

Z0mðrÞ
		
r¼R

qwm;n

qt

� �
. (35)

The final expression for the perturbation pressure term is found by substituting the velocity potential of Eq. (35) into

the pressure Eq. (25).

For Model 2 the solution for the velocity potential, applying the condition of zero perturbation pressure at both ends

of the shell ððFÞx¼0 ¼ ðFÞx¼L ¼ 0Þ, is given by

F ¼
X1
m¼1

X1
n¼0

½amnðtÞ cosðnyÞ þ bmnðtÞ sinðnyÞ�

�½cmnInðlmrÞ þ dmnKnðlmrÞ� sinðlmxÞ, ð36Þ

where In(r) and Kn(r) are the modified Bessel functions of the first and second kind, respectively, of order n, and

lm ¼ mp=L. By using the assumed mode expansion of w, given by Eq. (19c), and applying the impermeability condition

(27), the solution of the boundary value problem for internal fluid only is

F ¼ �
XM
m¼1

XN

n¼0

½ _wm;n;cðtÞ cosðnyÞ þ _wm;n;sðtÞ sinðnyÞ�
InðlmrÞ

lmI
0
nðlmRÞ

sinðlmxÞ, (37)

where I0nðrÞ is the derivative of In(r) with respect to r, and M the largest between M1 and M2, introduced in Eq. (18).

Axisymmetric generalized coordinates are included with the others involving subscript c, for brevity. Therefore, the

perturbation pressure p exerted by the contained fluid on the shell is given by

p ¼ rF ð
_FÞr¼R ¼ �rF

XM
m¼1

XN

n¼0

½ €wm;n;cðtÞ cosðnyÞ þ €wm;n;sðtÞ sinðnyÞ�
InðlmRÞ

lmI
0
nðlmRÞ

sinðlmxÞ, (38)

where r
F
is the mass density of the internal fluid. Eq. (38) shows that the fluid has an inertial effect on radial motion of

the shell. In particular, this inertial effect is different for the asymmetric and the axisymmetric terms of the mode

expansion. Hence, the fluid is expected to change the nonlinear behaviour of the fluid-filled shell. Usually the inertial

effect of the fluid is larger for axisymmetric modes, thus enhancing the nonlinear behaviour of the shell.

The difference in sign between (35) and (37) is because of the difference in the positive direction for w.

2.7. Method of solution

2.7.1. Solution method for Model 1

For Model 1, the expression for w, given in Eq. (17), is substituted into Eq. (2) to obtain a solution for the Airy stress

function F. The solution of F is composed of a particular solution Fp and a homogeneous solution Fh. For the 7 dof

model, all 280 terms of the particular solution are satisfied exactly, by ensuring the correspondence (one by one)

between the right-hand side terms of Eq. (2) with appropriate solution terms on the left-hand side of the same

expression. This is an arduous task, fraught with numerical difficulties, because of the hyperbolic functions involved in

the modal expansion. The homogeneous solution for the Airy stress function is assumed to be of the form

Fh ¼
1

2
N̄xy2 �

1

2pRL

Z 2pR

0

Z L

0

q2Fp

qy2

" #
dydx

( )
þ

1

2
N̄yx2 �

1

2pRL

Z 2pR

0

Z L

0

q2Fp

qx2

" #
dydx

( )

� N̄xyxy�
1

2pRL

Z 2pR

0

Z L

0

q2Fp

qxqy

" #
dydx

( )
. ð39Þ

The homogeneous solution includes the influence of the average particular solution to the averaged forces per unit

length. These latter are calculated using the expressions in Eq. (4) and averaging them over the circumference and length

of the shell (denoted by the overbars in Eq. (39)). The final expression of Eq. (1), including the solutions for the

fluid–structure interaction and the point-force external harmonic function, is discretized to seven ordinary differential
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equations using the comparison functions fiðx; yÞ,

fiðx; yÞ ¼

f1 ¼ j1 cosðny=RÞ;

f2 ¼ j1 sinðny=RÞ;

f3 ¼ j2 cosðny=RÞ;

f4 ¼ j2 sinðny=RÞ;

f5 ¼ j1;

f6 ¼ j3;

f7 ¼ j5;

8>>>>>>>>>>><
>>>>>>>>>>>:

(40)

by means of the Galerkin technique. The ji in the expression above are the clamped–clamped beam eigenfunctions.

2.7.2. Solution method for Model 2

In the case of Model 2, the Hamiltonian (variational) approach is used leading to a Lagrangian derivation of the

discretized equations of motion. The potential and kinetic energies related to the external loading and added mass are

inserted to the stress–strain potential and kinetic relationships as follows.

Using Green’s theorem, the kinetic energy associated with the fluid is given by

TF ¼
1

2
rF

Z 2p

0

Z L

0

ðFÞr¼R _wdxRdy. (41)

The nonconservative damping forces are assumed to be of the viscous type and could be taken into account by using

Rayleigh’s dissipation function; however, in what follows, for comparison with experiment, we consider c to have a

different value for each term of the mode expansion. Simple calculations give

F ¼
1

2
ðL=2ÞR

XN

n¼0

XM
m¼1

cn½cm;n;cð _u
2
m;n;c þ _v

2
m;n;c þ _w2

m;n;cÞ þ cm;n;sð _u
2
m;n;s þ _v

2
m;n;s þ _w2

m;n;sÞ�, (42)

where

cn ¼
2p if n ¼ 0;

p if n40:



(43)

The damping coefficient cm,n,c or s is related to a modal damping ratio, that can be evaluated from experiments, by

Bm;n;c or s ¼ cm;n;c or s=ð2mm;nom;nÞ, where om;n is the natural circular frequency of mode (m, n) and mm,n is the modal mass

of this mode, given by mm;n ¼ cnðrS þ rV ÞhðL=2ÞR, and the virtual mass due to contained fluid is

rV ¼
rF

lmh

InðlmRÞ

I0nðlmRÞ
. (44)

The total kinetic energy of the system is

T ¼ TS þ TF . (45)

The potential energy of the system is given by the sum of the elastic strain energy of the shell and the energy stored by

the two distributed rotational springs at the shell edges

U ¼ US þUR. (46)

The virtual work done by the concentrated radial force ~f , expressed by Eq. (23), is specialized for the expression of w

given in Eq. (18c)

W ¼ ~f cosðotÞðwÞx¼L=2; y¼0 ¼
~f cosðotÞ

XM1

m¼1

XN

j¼1

wm;j;cðtÞ þ
XM2

m¼1

wm;0ðtÞ

" #
. (47)

The following notation is introduced for brevity:

q ¼ um;n;c; um;n;s; vm;n;c; vm;n;s;wm;n;c;wm;n;s

� �T
;m ¼ 1; . . . ;M and n ¼ 0; . . . ;N. (48)

The generic element of the time-dependent vector q is referred to as qj; the dimension of q is equal to the number of dof

used in the modal expansion.
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The generalized forces Qj are obtained by differentiation of Rayleigh’s dissipation function and of the virtual work

done by external forces

Qj ¼ �
qF

q _qj

þ
qW

qqj

¼ � cj _qj þ

0 if qj ¼ um;n;c=s; vm;n;c=s or wm;n;s;

~f cosðotÞ if qj ¼ wm;n;c;

8<
: ð49Þ

where the subscript c/s indicates c or s.

The Lagrange equations of motion for the fluid-filled shell are

d

dt

qT

q _qj

 !
�

qT

qqj

þ
qU

qqj

¼ Qj ; j ¼ 1; . . . ; dof, (50)

where qT=qqj ¼ 0. These second-order equations have very long expressions, containing quadratic and cubic nonlinear

terms. In particular,

d

dt

qT

q _qj

 !
¼

rShðL=2ÞcnR €qj if qj ¼ um;n;c=s or vm;n;c=s;

ðrS þ rV ÞhðL=2ÞcnR €qj if qj ¼ wm;n;c=s;

(
(51)

which shows that no inertial coupling exists in this case.

The very complicated term giving quadratic and cubic nonlinearities can be written in the form

qU

qqj

¼
Xdof
k¼1

qkf k þ
Xdof
i;k¼1

qiqkf i;k þ
Xdof

i;k;l¼1

qiqkqlf i;k;l , (52)

where coefficients f have long expressions which can also include geometric imperfections.
3. Numerical results

The equations of motion have been obtained using the Mathematica version 4 computer software (Wolfram, 1999) in

order to perform analytical surface integrals of trigonometric functions. For both models, the discretized second-order

differential equations are transformed into two first-order equations. A nondimensionalization of variables is also

performed for computational convenience: the frequencies are divided by the natural frequency om;n of the mode (m, n)

investigated, and the vibration amplitudes are divided by the shell thickness h. The resulting first-order ordinary

differential equations are studied by using the software AUTO 97 (Doedel et al., 1998) for continuation and bifurcation

analysis of nonlinear ordinary differential equations. The software AUTO 97 is capable of continuation of the solution,

bifurcation analysis and branch switching by using arclength continuation and collocation methods. In particular, the

shell response under harmonic excitation has been studied via an analysis in two steps: (i) with the excitation frequency

fixed far enough from resonance, the magnitude of the excitation has been used as bifurcation parameter; the solution

was started at zero force, where the solution is the trivial undisturbed configuration of the shell, and was continued up

to the desired maximum force magnitude; (ii) when this desired magnitude of excitation was reached, the solution was

then continued by using the excitation frequency as bifurcation parameter.

Calculations have been performed for a shell having the following dimensions and material properties: L ¼ 520mm,

R ¼ 149.4mm, h ¼ 0.519mm, E ¼ 1.98� 1011 Pa, rS ¼ 7800 kg/m3 and n ¼ 0.3. This shell has a fundamental mode

with six circumferential waves and one longitudinal half-wave (n ¼ 6, m ¼ 1) for clamped boundary conditions given by

Eqs. (11) and (12). Calculations with the shell either empty or completely water-filled (rF ¼ 1000 kg/m3) are presented in

the following subsection.
3.1. Numerical results for empty and water filled shells

Table 1 lists the theoretical results obtained by the two models presented in this paper, along with the results

of Rayleigh–Ritz code DIVA, for the frequency of the fundamental mode (n ¼ 6, m ¼ 1) for empty and water-filled

shell.
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Table 1

Fundamental natural frequency (n ¼ 6, m ¼ 1) of empty and water-filled clamped shells calculated using Rayleigh–Ritz code (DIVA)

and Models 1 and 2

Model Empty shell frequency (Hz) Water-filled frequency (Hz)

DIVA 315.1 119.8

Model 1 340.3 127.9

Model 2 326.7 124.3

K.N. Karagiozis et al. / Journal of Fluids and Structures 21 (2005) 579–595 591
The software DIVA was used along with Flügge’s shell theory and 60 longitudinal modes to produce the frequency of

the empty shell as listed in Table 1. Model 1 used a 7 dof expansion derived from Eq. (13). Model 2 used the expansion

given in Eqs. (19a–c) with a spring constant k ¼ 1010N for boundary condition Eq. (12d) embedded in the boundary

conditions to approximate the clamped ends.

The fundamental natural frequency predicted by Model 2 (Table 1), in the case of the empty shell, is in good

agreement with that obtained by DIVA software (only 3.6% higher). Model 1 predicts a higher frequency (8% higher

than DIVA) in the case of the empty shell. In the case of the water-filled shell, the differences between DIVA and

Models 1 and 2 are smaller: 6.7% and 3.6%, respectively.

The frequency–amplitude response of the empty shell to a harmonic excitation of ~f ¼ f̄ ¼ 3N in the neighbourhood

of the fundamental mode (n ¼ 6, m ¼ 1), for both models is shown in Fig. 2; the results have been calculated assuming a

modal damping of z1;n ¼ 0:001. In Fig. 2 both models exhibit a hysteresis predicting a softening type of nonlinear

response for the shell vibrations. There is a good qualitative and quantitative agreement between the theoretical results

of the two models.

In the case of the water filled shell the frequency–amplitude responses with a forcing function of ~f ¼ f̄ ¼ 3N with a

modal damping of z1;n ¼ 0:0017 for both models are shown in Fig. 3. Both models predict an unstable solution when the

excitation frequency is in the range of 0:993oo=o1;no1:001. In this frequency range there is a two-period quasiperiodic

response with amplitude modulations, as shown in Amabili (2003a–c). The agreement between the two models is better

in the case of the water-filled shell.

In both cases, for the empty and the water filled shell, the coexistence of modes having the same shape

but different angular orientations, the first one described by cosðnyÞ (driven mode) and the other by sinðnyÞ
(companion mode), in the periodic response leads to the appearance of travelling-wave vibration around the

shell in the angular direction. This phenomenon is related to the axial-symmetry of the system and is a

fundamental difference vis-à-vis linear vibrations. The presence of the companion mode in the shell response also

leads to occurrence of more complex phase-relationships among the generalized coordinates (Amabili, 2003b).

Away from resonance, the companion mode solution disappears and the generalized coordinates are nearly in phase or

in anti-phase.
3.2. Comparison of theoretical and experimental results

Both models are compared to the experimental results obtained for a clamped polyester shell tested by Chiba (1993)

having the following dimensions and material properties: L ¼ 480mm, R ¼ 240mm, h ¼ 0.254mm, E ¼ 4.65� 109 Pa,

rS ¼ 1400 kg/m3 and n ¼ 0.38. Because the circular cylindrical shell had a longitudinal lap-joint seam, the axial-

symmetry of the shell was broken and the measured response of the vibration mode (n ¼ 15, m ¼ 1) did not display a

travelling wave. For this reason, the companion mode was eliminated from the expansion of the shell displacements

in the theoretical models. The spring constant in Model 2 was set to k ¼ 108 N, which is large enough to simulate

clamped ends.

The natural frequency of the fundamental mode (n ¼ 15, m ¼ 1) was found to be 95.7Hz, in both theoretical

models. The numerical responses obtained by the two models, evaluated for a force level ~f ¼ f̄ ¼ 0:02N and

modal damping z1;n ¼ 0:0015, are plotted in Fig. 4 and are compared to Chiba’s backbone curve (giving the free-

vibration resonance, corresponding to the maximum of the response versus the vibration frequency). Fig. 4 shows

the same trend of a softening type nonlinearity computed by using the two models and Chiba’s (1993) experi-

mental results, but clearly there are some quantitative differences between the experimental data and the theoretical

results.
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Fig. 2. The amplitude–frequency response of the fundamental mode, for an empty clamped shell, using Donnell’s theory with

z1;n ¼ 0:001 and ~f ¼ f̄ ¼ 3N: (1) branch 1; (2) branch 2; ——, stable response; - - - - -, unstable response. (a) Driven mode amplitude;

and (b) companion mode amplitude.
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4. Conclusions

Two theoretical models for clamped shells in contact with fluid have been developed to study the nonlinear vibrations

of thin circular cylindrical shells. In Model 1, the classical Donnell nonlinear shallow-shell theory was used to describe
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Fig. 3. The amplitude–frequency response of the fundamental mode, for a water filled clamped shell, using Donnell’s theory with

z1;n ¼ 0:0017 and ~f ¼ f̄ ¼ 3N: (1) branch 1; (2) branch 2; ——, stable response; - - - - -, unstable response. (a) Driven mode amplitude;

and (b) companion mode amplitude.
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Fig. 4. The experimental (Chiba, 1993) and theoretical (Models 1, 2) amplitude–frequency response for the fundamental mode

ðn ¼ 15; m ¼ 1Þ of an empty shell using Donnell’s theory and z1;n ¼ 0:0015; ~f ¼ f̄ ¼ 0:02N, with branch 1 only shown; shell

displacement at excitation point x ¼ L=2. ——, Theoretical stable response; - - - - - -, theoretical unstable response; - - -J - -,

experimental backbone curve from Chiba.
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the large amplitude vibrations of the shell. In Model 2, a flexible, energy approach has been used to construct a model

applicable for very thin shells, which is suitable for simulating different boundary conditions via elastic constraints. In

both models the shell deformation expansion includes the driven and companion modes, along with a sufficient number

of axisymmetric terms to ensure the correct type of nonlinear response.

The nonlinearity is enhanced for a completely water-filled shell as compared to the same empty shell. Numerical

results are compared to those available in the literature for both models. The difference in the results between Models 1

and 2 can be improved if more terms (asymmetric and axisymmetric) are included in the shell deformation expansions,

especially in the case of Model 1.

Both models are based on Ritz-type methods and employ global basis functions. In this regard, it would have

been interesting to compare the results with those obtained by finite element methods—not only the results

themselves, but also computational times. This, however, is at present impracticable. In this regard, the two

models used in this paper offer a great advantage over finite element codes for predicting the shell response close to

resonance. The finite element codes require extensive calculations over a wide frequency spectrum close to resonance,

using different time-marching integration techniques in order to obatin results. Therefore, these codes are time-

consuming and usually require state-of-the-art hardware to deal with the memory-intensive calculations in the

computer. However, the most difficult problem that these codes pose is the guess that must be made of the initial

conditions for the shell surface in order to follow the solution in the bifurcation diagram. Any solution jumps due to

transition of the solution from stable to unstable (and vice versa), or due to the appearance of additional stable and

unstable solutions along with discontinuities that might exist in the shell response solution, are extremely difficult, if not

impossible, to be dealt with in the existing finite element codes because of the initial condition limitations that such

software impose. Additional problems with accuracy, convergence and prediction of the correct trend of shell

nonlinearity make the use of finite element codes less desirable as compared to the solutions given by the two models in

this paper.
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